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Orthogonal polynomials on the unit circle are fully determined by their reflection
coefficients through the Szego� recurrences. Assuming that the reflection coefficients
converge to a complex number a with 0<|a|<1, or, in addition, they form a
sequence of bounded variation, we analyze the orthogonal polynomials by comparing
them with orthogonal polynomials with constant reflection coefficients which were
studied earlier by Ya. L. Geronimus and N. I. Akhiezer. In particular, we present
asymptotic relations under certain assumptions on the rate of convergence of the
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reflection coefficients. Under weaker conditions we still obtain useful information
about the orthogonal polynomials and also about the measure of orthogonality.
� 1999 Academic Press

Key words and phrases: Szego� orthogonal polynomials; unit circle orthogonal
polynomials; reflection coefficients, perturbations.

1. INTRODUCTION

The present paper is a continuation of our study of polynomials
orthogonal on an arc of the unit circle, started in [12]. We adopt here the
notation used therein.1

Orthogonal polynomials [.n]�
0 on the unit circle T =

def [z # C : |z|=1]
are defined by

|
T

.n(+, z) .m(+, z) d+(�)=$m, n , z=e i�, m, n # Z+,

where .n(+, z)=}n(+) zn+lower degree terms with }n(+)>0 and + is a
probability measure in [0, 2?) with infinite support. Here and in what
follows we say that + is a measure on T, and, for a function f on T, we set
�T f d+ =

def �2?
0 f (ei�) d+(�). The monic orthogonal polynomials 8n =

def }&1
n .n

along with the monic second kind orthogonal polynomials [9n =
def

}&1
n �n]�

0 satisfy the (Szego� ) recurrence relations

\8n+1

8*n+1

9n+1

&9*n+1+=\ z
za� n+1

an+1

1 +\8n

8n*
9n

&9 n*+ , n # Z+, (1)

where 80#1, 90#1, an =
def 8n(0) (cf. [12, formula (8)]), and the reversed

*-polynomial of a polynomial \n of degree n is defined by \n*(z) =
def

zn\� n(z&1). Note that the monic second kind orthogonal polynomials
[9n]�

0 are determined by replacing an with &an in the recurrences for
[8n]�

0 and [8n*]�
0 . The elements of the sequence [an]�

0 are called reflec-
tion coefficients and�or Szego� and�or Schur parameters. We can relate the
leading coefficients [}n]�

0 to the reflection coefficients [an]�
0 via

:
n

k=0

|.k(0)| 2=}2
n , n # Z+,
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1 In what follows, whenever it does not lead to confusion, we will suppress arguments such
as z (as in .n(+, z)) to simplify the notation. We write Z+ =

def
[n # Z : n�0] and R+ =

def

[x # R : x�0].



and

}2
n

}2
n+1

=1&|an+1 |2, n # Z+, (2)

(cf. [8, formula (1.5), p. 7 or formula (1.9), p. 9]). By the analogue of
Favard's theorem on T (cf. [4]), an arbitrary sequence [an]�

0 with a0 =
def

1
and |an |<1 for n # N, completely determines the sequence of orthogonal
polynomials [8n]�

0 . In fact, given such a sequence [an]�
0 , the polynomials

[8n(+)]�
0 obtained by the Szego� recurrences are orthogonal with respect

to a unique probability measure + on T with infinite support, such that
8n(+, 0)=an for n # Z+. A very special case is the sequence of Geronimus
polynomials [8� n]�

0 , where an =
def a for n # N with 0<|a|<1. Analogously,

we can talk about the sequences [.̂n]�
0 , [�� n]�

0 , and [9� n]�
0 as well.

We view the Geronimus polynomials as the unperturbed polynomials,
while [.n]�

0 corresponding to [an]�
0 are the perturbed ones. Our goal is

to describe the perturbed system of orthogonal polynomials in comparison
to the unperturbed system when some restraints are placed on the con-
vergence behavior of [an]�

0 .2

The Geronimus polynomials essentially live on an arc of the unit circle
characterized by :, such that

sin(:�2) =
def

|a|, : # (0, ?), (3)

(cf. [12, Sect. 2]). For ; # (0, ?) we define

2; =
def [ei� : ;���2?&;],

2o
; =

def [ei� : ;<�<2?&;], (4)

2c
; =

def [ei� : &;<�<;].

Using this terminology, the support of the orthogonality measure +̂ corre-
sponding to [.̂n]�

0 consists of 2: and one possible mass point in 2:
c.

In [12] the matrix recurrences (1) were used to manage the computa-
tions. However, the matrix recurrences were not ideal to handle certain
improvements of [12, Theorem 12, p. 410], such as asymptotics for [.n]�

0

at z=e\i: under the condition ��
n=0 n |an&a|<�.3 On the other hand,

if the matrix approach works, it may still be possible to replace it with an
argument involving three-term recurrences. For example, [12, Theorem 12,
p. 410] may be proved by combining the technique of reducing the order
of the three-term recurrences used in [19, 20] with a trigonometric Schur-
type inequality (cf. [5, Theorem 6, p. 85]).
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2 The same problem in a different but more general context is treated in [23].
3 For the continuous analogue of this condition in the spectral theory of the Schro� dinger

operator see, for instance, [1, Chap. II, formula (2.1.2), p. 37].



The three-term recurrence relation for [8n]�
0 can easily be deduced

from (1) (cf. [9, formula (3.4), p. 4]). We write it as

an+1 yn+2(z)&(an+1z+an+2) yn+1(z)+zan+2(1&|an+1 |2) yn(z)=0, (5)

where yn(z) =
def 8n(z), with initial conditions 80#1 and 81(z)=z+a1 .

It is easy to see that yn(z) =
def 9n(z) also satisfies (5) with 90#1 and

91(z)=z&a1 . Let N0 # N be defined by

N0 =
def

min[k # Z+ : an+1{0 for every n�k]. (6)

In this paper the index N0 will exist since limn � � an=a{0 is always
going to be assumed. Now consider

yn+2(z)&\z+
an+2

an+1+
}n+2

}n+1

yn+1(z)+z
an+2

an+1

}n }n+2

}2
n+1

yn(z)=0, n�N0 ,

(7)

which, by (2), is equivalent to (5) when n�N0 . Then [.n]�
N0

and [�n]�
N0

form a fundamental set of solutions to (7) for the range n�N0 . This
follows from the expression

} .n(z)
.n+1(z)

�n(z)
�n+1(z) }=&

2an+1}n+1

}n
zn, n # Z+, (8)

for the Wronskian which doesn't vanish for n�N0 . We also mention that
[8n]�

0 and [9n]�
0 form a fundamental set of solutions for

a� n+1 yn+2(z)&(a� n+1+a� n+2 z) yn+1(z)+a� n+2 z(1&|an+1 |2) yn(z)=0

(cf. [8, formula (8.9), p. 157]) where analogous special attention needs to
be paid to the case when an+1=0.

The following is a well known fact about the general solution of second
order linear difference equations (see [6, Sect. 5.3.5, formula (30), p. 308
(Russian), p. 305 (French), p. 368 (English)]).

Proposition 1. Assume that [ f1(n)]�
0 and [ f2(n)]�

0 satisfy the homo-
geneous difference equation

P0(n) f (n+2)+P1(n) f (n+1)+P2(n) f (n)=0, n # Z+,

and there is n0 # Z+ such that

} f1(n0)
f1(n0+1)

f2(n0)
f2(n0+1) }{0.
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Then, assuming P0(n){0 for n�n0 , the general solution of

P0(n) f (n+2)+P1(n) f (n+1)+P2(n) f (n)=Q(n), n�n0 ,

can be expressed in the form

f (n)= :
n&1

k=n0

} f1(k+1)
f1(n)

f2(k+1)
f2(n) }

} f1(k+1)
f1(k+2)

f2(k+1)
f2(k+2) }

Q(k)
P0(k)

+c1 f1(n)+c2 f2(n), n�n0 ,

where c1 and c2 are arbitrary constants. Given initial conditions f (n0) and
f (n0+1), the constants c1 and c2 can be determined from

f ( j)=c1 f1( j)+c2 f2( j), j=n0 , n0+1.

We will also need Gronwall's inequality (cf. [17, Lemma 3.2, p. 21; 14,
Lemma 4, p. 250; 28, p. 440]).

Proposition 2. Given _1 # Z and _2 # Z with _1<_2 , if the sequences
[un�0]_2

n=_1
and [vn�0]_2

n=_1
satisfy

un�d+ :
n&1

k=_1

vk uk , _1�n�_2 ,

then

un�d exp \ :
n&1

k=_1

vk+ , _1�n�_2 .

Corollary 3. Given _1 # Z and _2 # Z with _1<_2 , if the sequences
[un�0]_

2
n=_

1
and [0�vn<1]_

2
n=_

1
satisfy

un�d+ :
n

k=_1

vk uk , _1�n�_2 , (9)

then

un�
d

1&vn
exp \ :

n&1

k=_
1

vk

1&vk+ , _1�n�_2 .

5PERTURBATION OF ORTHOGONAL POLYNOMIALS, II



Proof. Rewrite (9) as

(1&vn) un�d+ :
n&1

k=_
1

vk

1&vk
(1&vk) uk , _1�n�_2 ,

and apply Proposition 2. K

The next result establishes the asymptotic behavior of the solutions of
certain second order difference inequalities with two identical characteristic
roots. The proof of this and its higher order analogues can be found in
[14, Theorem 3, p. 247].

Proposition 4. Given n0 # Z, let f : Z � C vanish in (&�, n0) & Z.
Suppose that f satisfies the difference inequality

| f (n+2)&2 f (n+1)+ f (n)|� g(n)( | f (n)|+| f (n+1)|+| f (n+2)|)

for every integer n�n0 with [g: Z � R+] satisfying

:
�

k=n
0

g(k) k<�.

Then either f (n)=0 starting with a sufficiently large index n or else, either
for r=0 or for r=1, limn � � n&rf (n) exists and it is different from 0.

2. THE CASE OF CONSTANT REFLECTION COEFFICIENTS

In this section we present explicit formulas for the Geronimus poly-
nomials [.̂n]�

0 (cf. [12, Sect. 2]) which will help us how to establish
asymptotic results for the perturbed polynomials. We assume that 0<
|a|<1 and that : is determined by (3). Let z1 and z2 denote the zeros of

w2&(z+1) w+(1&|a| 2) z=0. (10)

Then

z1=
z+1+- (z&ei:)(z&e&i:)

2
and z2=

z+1&- (z&ei:)(z&e&i:)
2

,

(11)

where the branch of the square root is chosen such that

lim
z � �

- (z&ei:)(z&e&i:)
z

=1.
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We will frequently use the notation

r1, 2 =
def z1, 2 �- 1&|a|2. (12)

Using (1) we can write

\8� n+1

8� *n+1

9� n+1

9� *n+1+=\ z
za�

a
1+\

8� n

8� n*
9� n

9� n*+
=\ z

za�
a
1+

n+1

\1
1

1
&1+ , n # Z+, (13)

that is,

.̂n+2&
z+1

- 1&|a|2
.̂n+1+z.̂n=0, n # Z+, (14)

(cf. (7)).

Case 1. z =
def ei� # 2o

: . Then |r1 |= |r2 | but r1{r2 .
By (11)

z1, 2=ei (��2) \cos
�

2
\i �sin

�&:
2

sin
�+:

2 + .

In particular, |z1 |= |z2 |=(1&|a|2)1�2 and |r1 |= |r2 |=1. We can use the
characteristic equation (10) to evaluate the matrix power in (13), which
yields (cf. [12, Sect. 2, p. 399])

.̂n=
A� zn

1+B� zn
2

(1&|a| 2)n�2=A� rn
1+B� rn

2 and .̂n*=
C� zn

1+D� zn
2

(1&|a|2)n�2=C� rn
1+D� rn

2 ,

(15)

where A� , B� , C� , and D� are functions of z which do not depend on n. For
�� n and �� n* similar representations hold as well.

Case 2. z =
def ei�=e\i:. Then r1=r2 .

We restrict ourselves to the case when �=:. If �=&:, a single sign
change will suffice to obtain the corresponding results. By (11)

z1, 2=
z+1

2
=

ei:+1
2

=(1&|a| 2)1�2 ei(:�2),

7PERTURBATION OF ORTHOGONAL POLYNOMIALS, II



so that |r1 |=|r2 |=1, and from (15) (see also [12, formulas (17) and (18),
p. 399]), after the limit � � :+0 is taken,

.̂n(ei:)=ei(:�2)n _\2(ei:+a)
ei:+1

&1+ n+1&
and

.̂n*(e i:)=e i(:�2)n _\2(1+a� e i:)
ei:+1

&1+ n+1& .

There are analogous formulas for �� n(ei:) and �� n*(ei:).

Case 3. z =
def ei� # 2c

: . Then |r1 |> |r2 |.
In this case (15) remains valid. As for the absolute values of r1 and r2 ,

by (11), we have

z1, 2=ei(��2) \cos
�

2
\� sin

:&�

2
sin

:+�

2 + ,

so that

|z1, 2|=cos
�

2
+�sin

:&�

2
sin

:+�

2

=�1+cos �

2
\�cos �&cos :

2

=
1&|a|2

- (1+cos �)�2�- (cos �&cos :)�2
,

from which

- 1&|a|2

2
�

1&|a|

- 1&|a|2
�|r2 |<1,

and

1<|r1 |�
2

- 1&|a|2
.

We point out two more useful facts about the Geronimus polynomials in
the special case when |a&1�2|=1�2. The first one is the explicit formula

.̂n(ei�)=e
i ( �

2) (n&1) \sin(n+1)*
sin *

e
i ( �

2)&
sin n*
sin *

e
i ( :

2)+ , n # Z+, (16)

8 GOLINSKII ET AL.



(cf. [8, formula (4.14$), p. 50]) where the parameter * # [0, ?] is given by

cos * =
def cos(��2)

cos(:�2)
, :���2?&:.

The second one is about the asymptotic behavior of the Christoffel function
K� m(z, z)=

def �m
j=0 |.̂j (z)|2 (cf. (52)). By (16), for |a&1�2|=1�2 and z=

def

ei� # 2o
: , we have

sin2 *K� n(z, z)

=sin2(n+1)*+2 :
n

j=1

sin2 j*&2 cos
�&:

2
:
n

j=1

sin( j+1)* sin j*.

Since

:
n

j=1

sin2 j*=
n
2

&
1
2

:
n

j=1

cos 2 j*

and

:
n

j=1

sin( j+1)* sin j*=
cos *

2 \n& :
n

j=1

cos 2 j*++
sin *

2
:
n

j=1

sin 2 j* ,

and

:
n

j=1

cos jx=
sin((n+1)�2) x cos(n�2) x

sin(x�2)
&1

and

:
n

j=1

sin jx=
sin((n+1)�2) x sin(n�2) x

sin(x�2)
,

we have

lim
n � �

K� n(z, z)
n

=
1&cos((�&:)�2) cos *

sin2 *
=|1&a|

sin(��2)
sin((�+:)�2)

, (17)

where the convergence is locally uniform in 2o
: .4

9PERTURBATION OF ORTHOGONAL POLYNOMIALS, II

4 N.B. that the latter limit relation appeared for the first time in [10, formula (4.13), p. 49],
where it was derived from [10, Theorem 3.2, p. 46] whose proof (very unfortunately) contains
an error (cf. [21, Section 4.6, pp. 26�28]).



3. PERTURBATION OF THE ROOTS OF THE
CHARACTERISTIC EQUATION

Recall that z=ei�, |an |<1 for n # N, 0<|a|<1, : is defined by (3),
limn � � an=a, and N0 is defined in (6). It will be convenient and later
helpful if we rewrite (7) for the orthonormal polynomials as

.n+2&(r1, n+r2, n) .n+1+r1, n r2, n .n=0, n�N0 , (18)

and, similarly, for the orthonormal Geronimus polynomials (cf. (14)),

.̂n+2&(r1+r2) .̂n+1+r1 r2 .̂n=0, n�0, (19)

where we denote by r1, n and r2, n the roots of the characteristic equation

r2&\z+
an+2

an+1+
}n+2

}n+1

r+z
an+2

an+1

}n}n+2

}2
n+1

=0, n�N0 , (20)

of the linear recurrence (7), so that

r1, n+r2, n=\z+
an+2

an+1+
}n+2

}n+1

and r1, n r2, n=z
an+2

an+1

}n}n+2

}2
n+1

. (21)

In particular, for z # T

r1, n{0 and r2, n{0, n�N0 ,

and, if 0<infn>N0
|an |�supn�N0

|an |<1, then there is a constant K0 such
that

sup
z # T

sup
N0�m1�m2

`
m2

n=m1

|r1, n r2, n | \1<K0 . (22)

For the orthonormal Geronimus polynomials, (21) reduces to

r1+r2=(z+1)(1&|a|2)&1�2 and r1r2=z. (23)

Our results are based on the convergence behavior of [an]�
0 . We will

formulate these conditions in terms of the roots of the characteristic poly-
nomials of (18) and (19). This is accomplished in two steps. First we
express these conditions in terms of the coefficients of (18) and (19) (see
(24) and (25)), and then we move from the coefficients of (18) and (19) to
the roots of the corresponding characteristic polynomials. This approach
works as long as the roots are different (see (27) and (28)). We omit most
of the details for they are tedious but simple.

10 GOLINSKII ET AL.



For z # 2: (in fact, uniformly in the convex hull of 2:), there exist func-
tions E1 , E2 , and E3 depending on a, and for every fixed =>0 there is
N1(=)�N0 such that

|r1, n+r2, n&r1&r2 |�(E1+=) |an+1&a|+(E2+=) |an+2&a| ,
(24)

|r1, n r2, n&r1 r2 |�(E3+=)( |an+1&a|+ |an+2&a| ), n�N1(=).

In Section 6, we will need a similar pair of inequalities for the roots of the
characteristic polynomial (20) written as

|r1, n+r2, n&r1, n+1&r2, n+1 |

�(E1+=) |an+2&an+1 |+(E2+=) |an+3&an+2 |,
(25)

|r1, n r2, n&r1, n+1 r2, n+1 |

�(E3+=)( |an+2&an+1 |+ |an+3&an+2 | ), n�N1(=).

For instance,

E1(a) =
def

(1&|a|2)&1�2 |a|&1,

E2(a) =
def

(1&|a|2)&1�2 |a|&1+2 |a| (1&|a|2)&1, (26)

E3(a) =
def

|a|&1+|a| (1&|a|2)&1

are appropriate choices for (24) and (25) to hold. To see how one arrives
at such estimates, we will derive the first inequality in (24). From (21) and
(23) we find

|r1, n+r2, n&r1&r2 |= } \z+
an+2

an+1+
}n+2

}n+1

&(z+1)
1

- 1&|a|2}
= } (z+1) \}n+2

}n+1

&
1

- 1&|a| 2++\an+2

an+1

&1+ }n+2

}n+1 }
�2 - 1&|a|2 } 1

- 1&|an+2 |2
&

1

- 1&|a|2 }
+

1

- 1&|an+2 |2 } an+2

an+1

&1 } ,
where we have used that |z+1|�2 - 1&|a|2 in the convex hull of 2: .
Now use

} 1

- x
&

1

- y }=
|x& y|

(- x+- y) - xy

11PERTURBATION OF ORTHOGONAL POLYNOMIALS, II



to obtain

} 1

- 1&|an+2 | 2
&

1

- 1&|a|2 }� ||an+2 |2&|a|2|

2(- 1&|a|2)3+o(1)

�
|an+2&a| ( |an+2 |+|a| )

2(- 1&|a|2)3+o(1)

�\ |a|

(- 1&|a|2)3
+o(1)+ |an+2&a| .

Furthermore,

}an+2

an+1

&1 }= 1
|an+1 |

|an+2&an+1 |�
1

|an+1 |
( |an+1&a|+|an+2&a| ).

Hence,

|r1, n+r2, n&r1&r2 |

�\ 2 |a|
1&|a|2+o(1)+ |an+2&a|

+ \ 1

|a| - 1&|a|2
+o(1)+ ( |an+1&a|+ |an+2&a| ),

giving the first inequality in (24). The other inequalities in (24) and (25)
follow by similar estimates.

In order to move on from the coefficients to the roots, we use

rj, n=
r1, n+r2, n+(&1) j+1

- (r1, n+r2, n)2&4r1, n r2, n

2
,

rj=
r1+r2+(&1) j+1

- (r1+r2)2&4r1 r2

2
, j=1, 2.

The following inequalities are not uniformly valid on 2: since they break
down at the endpoints e\i:. Thus, in practice, we use them on a compact
subsets of 2o

:. Given 2=2� /2o
: and =>0, there is N2(=, 2)�N1(=) such

that for j=1 and j=2 the inequalities

|rj, n&rj |� |r1&r2 |&1 [(E4+=) |an+1&a|+(E5+=) |an+2&a|], (27)

and (cf. (25))

|rj, n&r j, n+1 |�|r1&r2 |&1 [(E4+=) |an+2&an+1 |+(E5+=) |an+3&an+2 |]
(28)
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hold for n�N2(=, 2). The expressions

E4 =
def

2E1+E3 and E5 =
def

2E2+E3

are appropriate choices for the above defined functions.

4. ASYMPTOTIC ANALYSIS

A Solution Formula for the Perturbed Equation. First we establish a
connection between (18) and (19) by rewriting (18) as a constant coef-
ficient non-homogeneous equation

.n+2&(r1+r2) .n+1+r1 r2 .n=Qn , (29)

where

Qn =
def

(r1, n+r2, n&r1&r2) .n+1&(r1, n r2, n&r1 r2) .n .

In what follows, given =>0, let n0 =
def N1(=) so that the inequalities in (24)

hold. If z{e\i:, then rn
1 and rn

2 form a fundamental set of solutions to the
homogeneous form of (29). Thus, by Proposition 1,

.n= :
n&1

k=n0

} r
k+1
1 rk+1

2

rn
1 rn

2 }
} r

k+1
1 rk+1

2

rk+2
1 rk+2

2 }
Qk+c1 rn

1+c2 rn
2

= :
n&2

k=n0

rn&k&1
2 &rn&k&1

1

r2&r1

[(r1, k+r2, k&r1&r2).k+1&(r1, kr2, k&r1r2).k]

+c1 rn
1+c2 rn

2

= :
n&1

k=n0+1

rn&k
2 &rn&k

1

r2&r1

(r1, k&1+r2, k&1&r1&r2 ) .k (30)

+
rn&n0

2 &rn&n0
1

r2&r1

.n0+1

& :
n&2

k=n0

rn&k&1
2 &rn&k&1

1

r2&r1

(r1, k r2, k&r1 r2 ) .k

&r1 r2

rn&n0&1
2 &rn&n0&1

1

r2&r1

.n0
,

where, on the right hand side, the limit value is to be taken if z=e\i:.
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It is also essential to establish bounds for [.n]�
0 . To this end we start

with

|.n(z)|�dn(z)+ :
n&1

k=n0

vkn(z) |.k(z)|, |z|=1, n�n0 , (31)

which is a consequence of (30). Here

dn =
def } r

n&n0
2 &rn&n0

1

r2&r1 } |.n0+1 |+ } r1 r2

rn&n0&1
2 &rn&n0&1

1

r2&r1 } |.n0
| (32)

and

vkn =
def } r

n&k
2 &rn&k

1

r2&r1

(r1, k&1+r2, k&1&r1&r2 ) }
+ } r

n&k&1
2 &rn&k&1

1

r2&r1

(r1, k r2, k&r1 r2 ) } . (33)

We will also use

vk =
def

|r1, k&1+r2, k&1&r1&r2 |+ |r1, k r2, k&r1 r2 |. (34)

Now we are ready to formulate the first main result of this section.

Theorem 5. Let |an |<1 for n # N, 0<|a|<1, sin(:�2) =
def

|a| with
: # (0, ?), and let [.n]�

0 be a solution of (7) (cf. (18)).

(1) If ��
n=0 |an&a|<� and 2=2� /2o

:, then there exist two func-
tions A� # C(2o

:) and B� # C(2o
:) such that

|.n&A� rn
1&B� rn

2 |�K1 :
�

k=n&1

|ak&a|, n # N, (35)

holds on 2, where the constant K1 is independent of z # 2 and n (but depends
on the choice of 2).

(2) If ��
n=0 |an&a|<� and 2=2� /2o

: , then there exist two func-
tions C� # C(2o

:) and D� # C(2o
:) such that

|.n&C� .̂n&D� �� n |�K2 :
�

k=n&1

|ak&a|, n # N, (36)

holds on 2, where the constant K2 is independent of z # 2 and n (but depends
on the choice of 2).5
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(3) If ��
n=0 n |an&a|<�, then there exist two functions A� and B�

satisfying (r2&r1) A� # C(2:) and (r2&r1) B� # C(2:), such that

|r2&r1 | |.n&A� rn
1&B� rn

2 |�K3 :
�

k=n&1

k |ak&a|, n # N, (37)

holds on 2: , where the constant K3 is independent of z # 2: and n.

Proof. Fixing =>0, it is sufficient to prove (35)�(37) for n�n0=
def N1(=)

(cf. (24)).

Proof of (1). First note that, given a compact 2/2o
:, there exist d>0

and v>0, such that dn�d and vkn�vvk for n # N (cf. (32), (33), and
(34)). Thus we can apply Proposition 2 to (31) and use (24) to obtain
that supz # 2, n�n0

|.n(z)|<�. Hence, supz # 2, n # Z+ |.n(z)|<� as well. For
n # N _ [�] define An and Bn by

An =
def

& :
n&1

k=n0+1

r&k
1

r2&r1

(r1, k&1+r2, k&1&r1&r2 ) .k

+ :
n&2

k=n0

r&k&1
1

r2&r1

(r1, k r2, k&r1 r2 ) .k+
r2 r&n0

1

r2&r1

.n0
&

r&n0
1

r2&r1

.n0+1

and

Bn =
def

:
n&1

k=n0+1

r&k
2

r2&r1

(r1, k&1+r2, k&1&r1&r2 ) .k

& :
n&2

k=n0

r&k&1
2

r2&r1

(r1, k r2, k&r1 r2 ) .k&
r1 r&n0

2

r2&r1

.n0
+

r&n0
2

r2&r1

.n0+1 .

Then, by (24), limn � � An=A� and limn � � Bn=B� . Since .n=An rn
1+

Bn rn
2 (cf. (30)), (35) follows from (24) and

.n&A� rn
1&B� rn

2=(An&A�) rn
1+(Bn&B�) rn

2 .

Proof of (2). The equivalence of (35) and (36) follows from the fact
that both [rn

1 , rn
2]�

0 and [.̂n , �� n]�
0 are bases for the solutions of (19).

Proof of (3). For the entire arc 2: there exist d>0 and v>0, such that
dn�nd and vkn�nvvk for n # N (cf. (32), (33), and (34)). Rewrite (31) as

}.n(z)
n }�dn(z)

n
+ :

n&1

k=n0

k
n

vkn(z) }.k(z)
k } , |z|=1, n�n0 ,

and then apply Proposition 2 to obtain supz # 2:, n # N |.n(z)�n|<� which
can be used to complete the proof similarly to that of part (1). K
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Remark 6. The inequalities

sup
z # 2, n�n0

|.n(z)|<�

and

sup
z # 2:, n # N

|.n(z)�n|<�

which are valid under the assumptions ��
n=0 |an&a|<� and ��

n=0 n |an&a|
<�, respectively, are crucial in the proof of Theorem 5. They were first
proved in [12, Theorem 14, p. 414]. Asymptotics for the orthogonal poly-
nomials in the case of asymptotically periodic coefficients, which generalize
(35) and (36), were obtained in [24, Corollary 3.1, p. 347].

To determine the asymptotic behavior of the orthonormal polynomials
[.n]�

0 at the endpoints z=e\i: of the arc, we apply Proposition 4. This
approach works only for the case r1=r2 (cf. (23)) and cannot be used to
prove either (35) or (37).

Theorem 7. Let |an |<1 for n # N, 0<|a|<1, sin(:�2) =
def

|a| with : #
(0, ?), and let [.n]�

0 be a solution of (7) (cf. (18)). If ��
n=0 n |an&a|<�,

then there exist four complex numbers c1 , d1 , c2 , and d2 , such that |c1 |+
|d1 |>0, |c2 |+|d2 |>0, and

lim
n � �

.n(ei:) e&i(:�2)n

c1n+d1

=1 and lim
n � �

.n(e&i:) ei(:�2)n

c2n+d2

=1. (38)

Proof. Apply Proposition 4 with f (n)=def .n(e\i:) exp(�i(:�2)n) for
n�n0 (cf. (6)). K

Remark 8. There is a somewhat different way to prove Theorem 7.
One could follow the proof in [3, Theorem 4, p. 377] after replacing pn(1)
by .n(ei:) e&i(:�2)n. Reference [3, Theorem 4] was generalized in [14,
Theorem 3, p. 247] by considering it in the more general context of linear
difference equations.

Remark 9. It is possible to rewrite (38) in the spirit of (36) (cf. [14,
Theorem 4, pp. 247�248]).

Remarks 10. Analogous results can be derived from Theorems 5 and 7
by replacing [.n]�

0 either by [.n*]�
0 , or by [�n]�

0 , or by [�n*]�
0 . For

instance, (38) can be replaced by

lim
n � �

.n*(e i:) e&i(:�2)n

c� 1 n+d� 1

=1 and lim
n � �

.n*(e&i:) ei(:�2)n

c� 2 n+d� 2

=1,
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and, similarly to (37), one can write

|r2&r1 | |.n*&A� � rn
1&B� � rn

2 |�K4 :
�

k=n&1

k |ak&a|, n # N.

The corresponding formulas for [�n]�
0 and [�n]�

0 are almost identical
to those for [.n]�

0 and [.n*]�
0 , respectively. More specifically, one only

needs to replace a by &a, [an]�
0 by [&an]�

0 , and the .'s by �'s in the
formulas involving [.n]�

0 and [.n]�
0 . Other immediate extensions apply

to the k th associated polynomials [. (k)
n ]�

n=0 , [� (k)
n ]�

n=0 , and their *-trans-
forms (cf. [22, Theorem 3.1, p. 176; 26, Sect. 4]).

5. MASS POINTS OF THE MEASURE

In this section we are to relax the conditions we have imposed on the
reflection coefficients [an]�

0 . Although we will not be able to obtain
asymptotic formulas for [.n]�

0 , we will still find useful information about
the orthogonality measure. Such type of results come from [18, Theorem 2,
p. 565]. However, the technique used here comes from the one used in [19,
20] (see, e.g., the idea of reducing the original second order difference
equation to a first order one by introducing a new variable in the proof of
[20, Theorem, p. 35], and formulas (7), (8), and (9) in [20, pp. 35�36]).
It is possible to view the next theorem in the more general context of
second order linear difference equations which provides a common plat-
form for all of the above mentioned results (cf. [25, Chap. V]).

We remind the reader of two facts about the structure of + and supp(+)
(see (3) and (4) for the notation). Let a # C with 0<|a|<1. First, if
limn � � 8n(+, 0)=a, then 2:�supp(+) and supp(+)"2; is finite for every
0<;<: (cf. [7, Theorem 1$, p. 205; 12, Theorem 3, p. 401]). Second, if
��

k=1 |8k(+, 0)&a|<�, then + is absolutely continuous on the open
circular arc 2o

: (cf. [12, Theorem 12, p. 410; 24, Theorem 4.1, p. 248]).
Recall that z1 and z2 are the zeros of (10), that is,

z1=
z+1+- (z&ei:)(z&e&i:)

2
and z2=

z+1&- (z&ei:)(z&e&i:)
2

.

Theorem 11. Let z # 2o
: and 0< p<�. Let |an |<1 for n # N, 0<

|a|<1, sin(:�2) =
def

|a| with : # (0, ?), limn � � an=a, and let [.n]�
0 be a

solution of (7) (cf. (18)). If for some $>0

:
�

n=0

exp {&(17+$) p �n
k=0 |ak&a|

|z1&z2 | |a| - 1&|a| 2 ==� (39)

17PERTURBATION OF ORTHOGONAL POLYNOMIALS, II



then

:
�

n=0

|.n(z)| p=�. (40)

Proof. In what follows, let =>0 and pick 2=2� /2o
: so that z # 2. Let

n1�max(N0 , N1(=), N2(=, 2)) (cf. Section 3) so that r1, n{r2, n holds for
n�n1 (cf. (27)). We decompose Eq. (18) in the following manner. Put

�(n)
1, 1 =

def .n+1&r1 .n and � (n)
1, 2 =

def .n+1&r2 .n , (41)

and

� (n)
2, 1 =

def
� (n+1)

1, 1 &r2 � (n)
1, 1 and � (n)

2, 2 =
def

� (n+1)
1, 2 &r1 � (n)

1, 2 . (42)

Then, by (41), (42), and (18),

� (n)
2, 1=� (n)

2, 2=.n+2&(r1+r2) .n+1+r1 r2 .n

=(r1, n+r2, n&r1&r2 ) .n+1&(r1, n r2, n&r1 r2 ) .n ,

so that

|� (n)
2, 1 |+|� (n)

2, 2 |�2 |r1, n+r2, n&r1&r2 | |.n+1 |+2 |r1, n r2, n&r1 r2 | |.n |.

(43)

Using (18), |.n | can be estimated by

|.n |�
|r1, n+r2, n | |.n+1 |

|r1, n r2, n |
+

|.n+2 |
|r1, n r2, n |

, n�n1 . (44)

Next, it follows from (41) that

.n+1=
� (n+1)

1, 2 &� (n+1)
1, 1

r1&r2

and .n+2=
r1 � (n+1)

1, 2 &r2 � (n+1)
1, 1

r1&r2

,

and, hence,

|.n+1 |�
|� (n+1)

1, 1 |+|� (n+1)
1, 2 |

|r1&r2 |
and |.n+2 |�

|� (n+1)
1, 1 |+ |� (n+1)

1, 2 |
|r1&r2 |

, n�n1 .

(45)
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Combining (43), (44), and (45), we obtain

|� (n)
2, 1 |+|� (n)

2, 2 |�
2

|r1&r2 |
( |� (n+1)

1, 1 |+|� (n+1)
1, 2 | )

_{ |r1, n+r2, n&r1&r2 |

+ |r1, n r2, n&r1 r2 |
|r1, n+r2, n |
|r1, n r2, n |

+
|r1, n r2, n&r1 r2 |

|r1, n r2, n | = (46)

for n�n1 . Thus, using (24) with the previously fixed =>0, we can choose
n2�n1 so that

|� (n)
2, 1 |+|� (n)

2, 2 |�
2

|r1&r2 | \ |� (n+1)
1, 1 |+ |� (n+1)

1, 2 |+ en , n�n2 ,

where

en =
def

(E1+3 E3+5=) |an+1&a|+(E2+3E3+5=) |an+2&a|. (47)

From (42) it follows that

|� (n)
2, 1 |�|� (n)

1, 1 |&|� (n+1)
1, 1 | and |� (n)

2, 2 |�|� (n)
1, 2 |& |� (n+1)

1, 2 |.

Thus, by (46),

|� (n)
1, 1 |+|� (n)

1, 2 |�(|� (n+1)
1, 1 |+|� (n+1)

1, 2 | ) {1+
2 en

|r1&r2 |=
�(|� (n+1)

1, 1 |+|� (n+1)
1, 2 | ) exp { 2 en

|r1&r2 |= , n�n2 . (48)

Iterating (48), we obtain

|� (n+1)
1, 1 |+|� (n+1)

1, 2 |�( |� (n2)
1, 1 |+|� (n2)

1, 2 | ) exp {
&2 �n

k=n2
ek

|r1&r2 | = , n�n2 .

(49)

Here |� (n2)
1, 1 |+ |� (n2)

1, 2 |>0 since otherwise, from (41), .n2
=.n2+1=0, and

then (8) implies that an2+1=0 as opposed to the choice of n2 .6

By (41),

|� (n+1)
1, 1 |� |.n+1 |+|.n+2 | and |� (n+1)

1, 2 |�|.n+1 |+|.n+2 |.
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Thus, by (49),

|.n+1 |+|.n+2 |�
|� (n2)

1, 1 |+ |� (n2)
1, 2 |

2
exp {

&2 �n
k=n2

ek

|r1&r2 | = .

Given p>0, let cp=
def

max(1, 2 p&1). Then

cp( |.n+1 | p+|.n+2 | p)�\ |� (n2)
1, 1 |+ |� (n2)

1, 2 |
2 +

p

exp {&2p �n
k=0 ek

|r1&r2 | =
�\ |� (n2)

1, 1 |+ |� (n2)
1, 2 |

2 +
p

exp {&2p - 1&|a| 2 E �n+2
k=1 |ak&a|

|z1&z2 | = ,

n�n2 ,

where E=E(a, =) =
def E1+E2+6E3+10= (cf. (47)). Now the theorem follows

from

:
�

n=n2+1

|.n | p

�
(|� (n2)

1, 1 |+|� (n2)
1, 2 | )p

2 p+1 cp
:
�

n=n2+1

exp {&2p - 1&|a|2 E �n+1
k=1 |ak&a|

|z1&z2 | = ,

where, by (26), the constant E is given by

E =
def 2

|a| (1&|a| 2)
(3+|a|2+- 1&|a|2)+10=,

and, since x+- 1&x�5�4 for x # [0, 1],

2 - 1&|a|2 E�
17+$

|a| - 1&|a| 2
,

where $=20 - 1&|a|2 =. K

Corollary 12. If the conditions of Theorem 11 hold with p=2 in (39),
then the orthogonality measure + corresponding to [.n]�

0 has no mass point
at that particular point z # 2o

: .
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Proof. By (40), ��
n=0 |.n(+, z)|2=�. Hence the corollary follows from

the well known formula

:
�

n=0

|.n(+, z)|2=
1

+([�])
, z=e i�, (50)

(cf. [16, formula (7) on p. 453 and its proof on pp. 444�445]). K

Corollary 13. Let |an |<1 for n # N, 0<|a|<1, sin(:�2) =
def

|a| with
: # (0, ?), limn � � an=a, and let [.n]�

0 be a solution of (7) (cf. (18)). If for
every { # R

:
�

n=0

exp {{ :
n

k=0

|ak&a|==�, (51)

then for every z # 2o
: and p>0 we have [.n(z)]�

n=0 � lp . In particular, the
corresponding orthogonality measure + has no mass points in 2o

: .

Remark 14. If either |an&a|=o(1�n) or ��
n=0 |an&a|<�, then (51)

holds.

Remark 15. One can eliminate the use of z1 and z2 from (39) in the
following way. Let z=ei� with :<��?. Then we have

|z1&z2 |=|- (z&ei:)(z&e&i:)|=2 �sin
�&:

2
sin

�+:
2

�
2

- ?
- (1&|a|2)1�2 min(1, 2 |a| ) _ |�&:|1�2,

where we used |sin((�&:)�2)|�|�&:|�? and |sin((�+:)�2)|�min(sin :,
sin ?+:

2 ) for :<��?. Another possible inequality is given by

|z1&z2 |=2 �sin
�&:

2
sin

�+:
2

>2 } sin
�&:

2 }�2
?

|�&:|,

where we used |sin((�+:)�2)|>|sin((�&:)�2)| for :<��?.

Example 16. One cannot replace the condition |an&a|=o(1�n) by
|an&a|=O(1�n) in Corollary 13, since there are measures + and corre-
sponding orthogonal polynomials [.n]�

0 with reflection coefficients [an]�
0 ,

such that limn � � n |an&a|>0, and + has a mass point in 2o
: . Indeed, let

a =
def

1+i�2, and consider the Geronimus polynomials [.̂n]�
0 along with

their measure of orthogonality +̂a (cf. Section 2). We construct a new
measure by adding a mass point at a fixed z0 # 2o

: , and then renormalizing
the resulting measure. More specifically, let +=+a, z0

=
def

(+̂a+$z0
)�2. Denote
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by [.n]�
0 and [8n]�

0 the sequences of orthonormal and monic orthogonal
polynomials with respect to +, respectively. The relation between 8n and
8̂n is given by

8n(z)=8� n(z)&
8� n(z0) K� n&1(z, z0)
1+K� n&1(z0 , z0)

,

where

K� m(z, u) =
def

:
m

j=0

.̂j (z) .̂j (u), (52)

(cf. [2, p. 525; 11, formula (2.8), p. 36]). Putting z=0 and taking into
account K� n&1(0, z0)=}̂n&1 .̂*n&1(z0) (cf. [8, Chap. 1, formula (1.9)]), we
obtain

an=a&
}̂n&1

}̂n

.̂n(z0) .̂*n&1(z0)
1+K� n&1(z0 , z0)

,

so that

|an&a|=(1&|a|2)1�2 |.̂n(z0) .̂n&1(z0)|
1+K� n&1(z0 , z0)

. (53)

Let z0 =
def

&1. It follows from (16) that

.̂n(&1) .̂n&1(&1)=(&1)n exp {(&1)n+1 i:
2 = .

Hence, by (53) and (17),

lim
n � �

n |an&a|= lim
n � �

n(1&|a| 2)1�2

1+K� n&1(&1, &1)

=cos(:�2)
(1&|a|2)1�2

|1&a|
=

1

- 2
>0. K

The situation concerning mass points at the endpoints of the arc is more
delicate. The following statement is a direct consequence of Theorem 7 and
(50).

Theorem 17. Let |an |<1 for n # N, 0<|a|<1, sin(:�2) =
def

|a| with
: # (0, ?), and let [.n]�

0 be a solution of (7) (cf. (18)). If ��
n=0 n |an&a|

<�, then orthogonality measure + has no mass points at the endpoints of
2: (cf. (4)).
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6. SEQUENCES OF BOUNDED VARIATION

Another Solution Formula for the Perturbed Equation. A possible relaxa-
tion of the condition ��

n=0 |an&a|<� is to assume that [an]�
0 is of

bounded variation, that is,

:
�

n=0

|an+1&an |<�. (54)

Using (28), the latter property can also be described in terms of the roots
rj, n of the characteristic equation (20). To be able to use (54), we rewrite
(19) as

.̂n+2&r1 .̂n+1=r2(.̂n+1&r1 .̂n). (55)

In what follows, let =>0 and 2=2� /2o
: . Let n1�max(N0 , N1(=),

N2(=, 2)) (cf. Section 3) and z # 2 so that r1, n{r2, n holds for n�n1 (cf.
(27)). For the perturbed equation (18) we follow the technique introduced
in [13, p. 614]. We set

gn =
def .n+1&r1, n .n

so that (18) becomes

gn+1&r2, n gn=(r1, n&r1, n+1) .n+1 . (56)

This may be solved as follows (cf. [13; 15; 29; 28, p. 450] for a similar
analysis of orthogonal polynomials on the real line). Let

Gn1
=
def gn1

and Gn =
def gn< `

n&1

k=n1

r2, k , n�n1+1.

Then

Gn+1&Gn=(r1, n&r1, n+1) .n+1< `
n

k=n1

r2, k

so that

Gn=Gn1
+ :

n&1

k=n1

(r1, k&r1, k+1) .k+1

>k
j=n1

r2, j
, n�n1 .

The symmetric role of r1 and r2 in (55) suggests introducing

hn =
def .n+1&r2, n .n
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and

Hn1
=
def hn1

and Hn =
def hn< `

n&1

k=n1

r1, k , n�n1+1.

Then

Hn=Hn1
+ :

n&1

k=n1

(r2, k&r2, k+1) .k+1

>k
j=n1

r1, j
, n�n1 .

Now we can derive an implicit solution formula for .n using

.n=
hn& gn

r1, n&r2, n
and .n+1=

r1, n hn&r2, n gn

r1, n&r2, n

which we write as

.n=
1

r1, n&r2, n \Hn1
+ :

n&1

k=n1

(r2, k&r2, k+1) .k+1

>k
j=n1

r1, j + `
n&1

k=n1

r1, k

&
1

r1, n&r2, n \Gn1
+ :

n&1

k=n1

(r1, k&r1, k+1) .k+1

>k
j=n1

r2, j + `
n&1

k=n1

r2, k , n�n1 .

(57)

In this section, our first result is about upper bounds and asymptotics for
the orthonormal polynomials [.n]�

0 whose reflection coefficients satisfy
(54).

Theorem 18. Let |an |<1 for n # N, 0<|a|<1, sin(:�2) =
def

|a| with
: # (0, ?), let [.n]�

0 be a solution of (7) (cf. (18)), and let 2=2� /2o
: .

Assume that limn � � an=a, ��
n=0 |an+1&an |<�, and 0 =

def
max[01 , 02]

<� with

01 =
def

sup
z # 2

sup
_>N0

`
_

j=N0+1

|r1, j |<�

and

02 =
def

sup
z # 2

sup
_>N0

`
_

j=N0+1

|r2, j |<�, (58)
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where N0 is defined by (6). Then

sup
z # 2

sup
n # Z+

|.n(z)|<� (59)

and there exist a constant K5 independent of z # 2 and n (but it depends on
the choice of 2) and two functions H� # C(2o

:) and G� # C(2o
:), such that

}(r1, n&r2, n) .n&H� `
n&1

k=N0

r1, k+G� `
n&1

k=N0

r2, k }
�K5 :

�

k=n+1

|ak+1&ak |, n>N0 , (60)

in 2.

Proof. Let z # 2, =>0, and let 0<#<1 and n1�max(N0 , N1(=),
N2(=, 2)) (cf. Section 3) be such that

|r1, n&r2, n |�#,

0( |r1, n&r1, n+1 |+|r2, n&r2, n+1 | )<1&#, z # 2, n>n1 . (61)

Choosing # and n1 in (61) is possible because we have

lim
n � �

|r1, n&r2, n |=|r1&r2 |= }�(z&1)2+4z |a| 2

1&|a| 2 } ,
limn � � |r1, n&r1, n+1 |=0, and limn � � |r2, n&r2, n+1 |=0 uniformly in 2
(cf. (20)). Clearly, instead of (59), it is sufficient to prove

sup
z # 2

sup
n�n1

|.n(z)|<�. (62)

It follows from (57) and the left-hand side of (61) that

|.n |�0#&1( |Hn1
|+|Gn1

| )

+ :
n&1

k=n1

[0( |r2, k&r2, k+1 |+|r1, k&r1, k+1 | ) |.k+1 | ] (63)

for n�n1 . Now use Corollary 3 applied to (63) (cf. right-hand side of (61))
and (28) to obtain (62).
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Having proved (59), now we consider (60). Let again z # 2, =>0, and let
n1�max(N0 , N1(=), N2(=, 2)) (cf. Section 3). By (57) we have

(r1, n&r2, n ) .n=Hn `
n&1

k=n1

r1, k&Gn `
n&1

k=n1

r2, k , n�n1 ,

where

Gn =
def Gn1

+ :
n&1

k=n1

(r1, k&r1, k+1) .k+1

>k
j=n1

r2, j

and

Hn =
def Hn1

+ :
n&1

k=n1

(r2, k&r2, k+1) .k+1

>k
j=n1

r1, j
.

Using (22), (28), (58), and (59), define G� and H� by

G� =
def limn � � Gn

>n1&1
k=N0

r2, k
and H� =

def limn � � Hn

>n1&1
k=N0

r1, k
,

respectively. Then

(r1, n&r2, n) .n&H� `
n&1

k=N0

r1, k+G� `
n&1

k=N0

r2, k

=\Hn&H� `
n1&1

k=N0

r1, k+ `
n&1

k=n1

r1, k

&\Gn&G� `
n1&1

k=N0

r2, k+ `
n&1

k=n1

r2, k , n�n1 ,

so that (60) follows from (28) when n�n1 . When N0<n<n1 , (60) clearly
holds with an appropriate choice of K5 . K

Remark 19. By (22), the products in (58) also satisfy

0< inf
z # 2

inf
_>N0

`
_

j=N0+1

|r1, j | and 0< inf
z # 2

inf
_>N0

`
_

j=N0+1

|r2, j | .
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Remark 20. If |an |<1 for n # Z+ and 0<|a|<1, then (58) holds
whenever ��

n=0 |an&a|<�.

Recall that z1 and z2 are the zeros of the polynomial (10), that is,

z1=
z+1+- (z&ei:)(z&e&i:)

2
and z2=

z+1&- (z&ei:)(z&e&i:)
2

.

The next theorem is related to Theorem 11.

Theorem 21. Let z # 2o
: and 0< p<�. Let |an |<1 for n # N, 0<

|a|<1, sin(:�2) =
def

|a| with : # (0, ?), limn � � an=a, and let [.n]�
0 be a

solution of (7) (cf. (18)). Let

| =
def 1

2 lim sup
l � �

inf
n�l

`
n

k=l

min ( |r1, k |, |r2, k | )>0, (64)

where r1, n and r2, n are the roots of (20). If, for some $>0,

:
�

n=0

exp {&(14+$) p �n
k=0 |ak+1&ak |

|z1&z2 |2 |a| ==� (65)

then

:
�

n=0

|.n(z)| p=�.

Proof. The proof is a modification of that of Theorem 11. In what
follows, let =>0, and let l0�max(N0 , N1(=), N2(=, 2)) (cf. Section 3) so
that r1, n{r2, n holds for n�l0 (cf. (27)). We start with the decomposition
of (18) (cf. (56)) by introducing

' (n)
1, 1 =

def .n+1&r1, n .n and ' (n)
1, 2 =

def .n+1&r2, n .n , (66)

and

' (n)
2, 1 =

def ' (n+1)
1, 1 &r2, n ' (n)

1, 1 and ' (n)
2, 2 =

def ' (n+1)
1, 2 &r1, n ' (n)

1, 2 . (67)

Then, by (66), (67), and (18),

' (n)
2, 1=(r1, n&r1, n+1 ) .n+1 (68)
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and

' (n)
2, 2=(r2, n&r2, n+1 ) .n+1 . (69)

It follows from (66) that

.n=
' (n)

1, 2&' (n)
1, 1

r1, n&r2, n
and .n+1=

r1, n ' (n)
1, 2&r2, n ' (n)

1, 1

r1, n&r2, n
, n�l0 . (70)

Combining (68) and the left-hand side of (70) applied with n+1 instead of
n, we obtain

|' (n)
2, 1 |�(|' (n+1)

1, 1 | )
|r1, n&r1, n+1 |

|r1, n+1&r2, n+1 |
, n�l0 .

Similarly, combining (69) and the left-hand side of (70) applied with n+1
instead of n, we get

|' (n)
2, 1 |�(|' (n+1)

1, 1 | )
|r1, n&r1, n+1 |

|r1, n+1&r2, n+1 |
, n�l0 .

Hence,

|' (n)
2, 1 |+|' (n)

2, 2 |�(|' (n+1)
1, 1 |+|' (n+1)

1, 2 | )
|r1, n&r1, n+1 |+ |r2, n&r2, n+1 |

|r1, n+1&r2, n+1 |
,

n�l0 .

Pick l1�l0 in such a way that |r1, n+1&r2, n+1 |> |r1&r2 |�(1+=) for
n�l1 . Then we get

|' (n)
2, 1 |+ |' (n)

2, 2 |�
1

|r1&r2 | 2 ( |' (n+1)
1, 1 |+ |' (n+1)

1, 2 | ) fn , n�l1 , (71)

where, using (28) with the previously fixed =>0, we can choose

fn =
def [2(E4+ =) |an+2&an+1 |+2(E5+ =) |an+3&an+2 |](1+=).

By (67),

|'(n)
2, 1 |�|r2, n | |' (n)

1, 1 |& |' (n+1)
1, 1 |�min( |r1, n |, |r2, n | ) |' (n)

1, 1 |& |'(n+1)
1, 1 |
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and

|'(n)
2, 2 |�|r1, n | |' (n)

1, 2 |& |' (n+1)
1, 2 |�min( |r1, n |, |r2, n | ) |' (n)

1, 2 |& |'(n+1)
1, 2 |,

so that by (71),

min( |r1, n | , |r2, n | )( |' (n)
1, 1 |+|' (n)

1, 2 | )

�(|' (n+1)
1, 1 |+ |' (n+1)

1, 2 | ) {1+
fn

|r1&r2 |2=
�(|' (n+1)

1, 1 |+ |' (n+1)
1, 2 | ) exp { fn

|r1&r2 | 2= , n�l1 . (72)

Let l2(�l1) # N be such that >n
k=l2

min( |r1, k |, |r2, k | )�| for n�l2

(cf. (64)). Iterating (72) yields

|' (n+1)
1, 1 |+|' (n+1)

1, 2 |� `
n

k=l2

min( |r1, k |, |r2, k | )( |' (l2)
1, 1 |+|' (l2)

1, 2 | )

_exp {
&�n

k=l2
fk

|r1&r2 |2 =
�|( |' (l2)

1, 1 |+|' (l2)
1, 2 | ) exp {&�n

k=0 fk

|r1&r2 |2 = , n�l2 .

(73)

Here |' (l2)
1, 1 |+|' (l2)

1, 2 |>0 since, otherwise, by (66) (cf. (70)), .l2
=.l2+1=0,

and then (8) would imply al2+1=0 as opposed to the choice of l2 .7

By (66) applied with n+1 instead of n, |' (n+1)
1, 1 |�|.n+2 |+|r1, n+1 | |.n+1 |

and |'(n+1)
1, 2 |�|.n+2 |+|r2, n+1 | |.n+1 |. Note that limn � � |r1, n |=1 and

limn � � |r2, n |=1. Thus, by (73), there is l3(�l2) # N such that

|.n+1 |+|.n+2 |�
|' (l2)

1, 1 |+ |' (l2)
1, 2 |

3
| exp {&�n

k=0 fk

|r1&r2 | 2 = , n�l3 .
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Given p>0 put cp =
def

max(1, 2 p&1). Then

cp( |.n+1 | p+|.n+2 | p)

�\ |' (l2)
1, 1 |+|' (l2)

1, 2 |
3 +

p

| p exp {& p �n
k=0 fk

|r1&r2 |2 =
�\ |' (l2)

1, 1 |+|' (l2)
1, 2 |

3 +
p

| p

_exp {& p(1&|a| 2) F �n+2
k=1 |ak+1&ak |

|z1&z2 |2 = , n�l3 ,

where F=F(a, =)=def (1+=)(2E4+2E5+4=) and we used (12) to replace
|r1&r2 |&2 by (1&|a| 2) |z1&z2 |&2. Now the theorem follows from

:
�

n=l3+1

|.n | p�
(|' (l2)

1, 1 |+|' (l2)
1, 2 | )p

2 cp3 p | p

_ :
�

n=l3+1

exp {& p(1&|a|2) F �n+1
k=1 |ak+1&ak |

|z1&z2 |2 = .

For the constant F we have

F=
8

|a| (1&|a|2) \- 1&|a|2+|a|2+
1
2++O(=),

and, since x+- 1&x�5�4 for x # [0, 1],

(1&|a|2) F�
14
|a|

+O(=),

giving the desired result. K

Remark 22. Just as in the case of Theorem 11, we have a number of
corollaries. If the conditions of Theorem 21 hold with p=2 in (65), then
the measure of orthogonality + corresponding to [.n]�

0 has no mass point
at that particular point z # 2o

: . If limn � � an=a with 0<|a|<1 and for
every { # R

:
�

n=0

exp {{ :
n

k=0

|ak+1&ak |==�, (74)

then for every z # 2o
: and p>0 we have [.n(z)]�

n=0 � lp . In particular, the
corresponding orthogonality measure + has no mass points in 2o

: . If either
|an+1&an |=o(1�n) or ��

n=0 |an+1&an |<�, then (74) holds. The condi-
tion |an+1&an |=o(1�n) cannot be replaced by |an+1&an |=O(1�n) since
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the polynomials given in Example 16 again yield a counterexample.
Finally, (74) holds whenever the conditions of Corollary 13 are satisfied.
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